Parasites and the Benficial Predator?

Parasites and predators, generally speaking, negatively affect the organisms that they use (i.e., parasites hurt their hosts, and predators are obviously deleterious for prey). However, as I mentioned in the last blog, in ecology everything depends (on the details). Here, I will focus on some of the complications that can arise when one considers the effects of parasites and predators together.

First off, parasites can be eaten. They can be eaten when they are inside a host, and that consumption can put the parasites in the right or wrong host (the right host would be the one in which the parasite can complete its life cycle). For example, improperly cooked pork can contain parasites (e.g., Taenia solium). These parasites do not “want” to get into humans; they cannot complete their life cycles inside humans, and instead tend to cause huge problems. Parasites can also be eaten when they are outside the host. Many parasites have free-living stages in the environment, and they need to be consumed in order to continue their life cycle. Such consumption can also lead the parasite to the right or wrong host (Johnson et al. 2010).

Both of the above consumptive scenarios (a parasite being eaten when it is in or outside of the host) contribute to parasite population dynamics (how large is the parasite population, how many hosts are infected, what proportion of hosts is infected). One could thus imagine that predation could facilitate or hinder parasite transmission. For instance, if hosts acquire more energy from eating parasite-infected prey than they lose from the infection, hosts might do better if they ate parasite-infected prey, and therefore predation could increase parasite transmission. But if non-host predators eat parasites in the environment or prey with parasites, then these predators might reduce transmission to the host species (Johnson et al. 2010, Lafferty & Morris 1996).

Importantly, predators also affect their prey by more than just killing the prey. As any hunter can tell you, prey tend to run or fight back when encountered with a predator. If prey survive a predation attempt, they tend to alter their behavior to reduce predation risk (e.g., increase hiding time and reduce foraging time). Such behavioral changes can happen even if the prey never experienced a direct predator attack. Simply exposure to the smell/sight/etc. of a predator, or the smell/vision/etc. of other dead prey, can elicit behavioral changes in prey. These behavioral changes may also affect that prey’s exposure to parasites. If, for example, prey are more likely to encounter parasites by staying in one place and reducing activity, predators may indirectly increase parasitism among prey. The opposite may occur, however, if prey activity increases exposure to parasites.

In a recently published paper, a group of authors attempted to discern whether the combination of these factors – predators eating parasites and predator effects on host behavior – sum to positively or negatively affect parasite transmission to hosts. Orlofske et al. (2014) found that in the presence of a predator (a dragonfly larvae), tadpoles reduced activity and acquired more parasites. Other authors have previously demonstrated that active tadpoles acquire fewer parasites than anesthetized tadpoles, so activity was the key factor driving the increase in parasitism in this study. Interestingly however, the authors also discovered that the purported predator (damselfly larvae) of the free-living form of the parasite in question (a trematode) did not actually eat the parasite in a more realistic experimental setting (but it did in previous laboratory studies). Further, damselfly larvae caused the same reduction in activity among the tadpoles as the dragonfly larvae, even though the damselflies are not predators of the tadpoles.

\While this study did not reveal that parasite predators reduce infection intensity (contrary to expectation), it did validate the idea that host predators should be expected to increase parasitism when predator behavioral responses work against anti-parasite behaviors. It also highlights the notion that everything in ecology depends on the details, and concepts that bear fruit in lab settings may not do so in the field for a variety of reasons.



Orlofske, S.A., Jadin, R.C., Hoverman, J.T. & Johnson, P.T.J. (2014). Predation and disease: understanding the effects of predators at several trophic levels on pathogen transmission. Freshwater Biology 59(5): 1064–1075

Johnson, P.T.J., Dobson, A., Lafferty, K.D., Marcogliese, D.J., Memmott, J., Orlofske, S.A., Poulin, R., & Thieltges, D.W. (2010). When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology and Evolution 25(6): 362-371

Lafferty, K.D. & Morris, A.K. (1996). Altered behavior of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology 77:1390-1397.


Click here for constructive comment confabulations

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s